Supporting information for:

Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

Sung Beom Cho and Yong-Chae Chung*

Department of Materials Science and Engineering, Hanyang University, Seoul 133-791

E-mail: yongchae@hanyang.ac.kr

^{*}To whom correspondence should be addressed

Table S1: Stacking configuration of single-sided fluorographene with CL and substrates.

	Atomic structure	Stacking pattern	Interlayer distance w.r.t. CL (Å)	Interlayer distance w.r.t. substrate (Å)
$\mathrm{C_4F/BN}$		А-В	2.81	2.81
$\mathrm{FC}_4/\mathrm{BN}$		А-В	3.27	3.28
$\mathrm{C_4F/G}$		A-A	2.89	2.85
FC_4/G		А-В	3.31	3.31

Figure S1: Band structure of CL, C_4F , and substrates. The band of substrate, C_4F , and CL is colored with blue, red, and green, respectively.

Figure S2: The band structure of $CL/C_4F/substrates$ for type-B alignment. (a) shows the band structure of $G/FC_4F/h$ -BN and G/h-BN. The band shift of graphene is 1.41 eV. (b) is for $BN/FC_4/Grpt$ and BN/Grpt and the shift of BN is 1.30 eV.

Figure S3: Electron redistribution function of (a) C_4F/BN and (b) $BN/C_4F/BN$. The magnitude of the redistribution is similar between two systems.